Problem 1

Let \(\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 4 \\ 1 \\ -3 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix}, A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3], \) and \(\vec{p} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}. \)

(a) Is \(\vec{p} \) in \(\text{Col } A \)?

(b) Is \(\vec{p} \) in \(\text{Nul } A \)?

Note: Col \(A \) means the “column space of \(A \),” which is the same as the image of \(A \).

Nul \(A \) means the “null space of \(A \),” which is the same as the kernel of \(A \).
Problem 2

Let $A = \begin{bmatrix} 2 & 1 & -1 \\ -5 & 3 & 0 \\ 3 & -1 & 4 \end{bmatrix}$. Compute the det A using the cofactor method and row reduction.
Problem 3

Use a determinant to decide if the vectors \[
\begin{bmatrix}
3 \\
-2 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
4 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
2 \\
5
\end{bmatrix}
\] are linearly independent.
Problem 4
Let \(H \) be the set of all polynomials of degree at most 3, with integers as coefficients. Is \(H \) a subspace of \(\mathbb{P}_3 \)?
Problem 5

Let $V = \left\{ \begin{bmatrix} 3c - a \\ b \\ a - 2b \\ c + d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$.

Show that V is a vector space and find a suitable basis for it.
Problem 6

For each of the following sets, answer the following questions:

(1) Are the vectors in the set linearly independent?
(2) Do the vectors in the set span \mathbb{R}^2?
(3) Is the set a basis for \mathbb{R}^2?

Set $S_1 = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix} \}$

Set $S_2 = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$

Set $S_3 = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \}$

Set $S_4 = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \}$