Least-Squares

Distance from a Point to a Plane

Vectors \vec{u}_1 and \vec{u}_2 are orthogonal.

The distance from point P to plane W is $||\vec{y} - \hat{\vec{y}}||$.

Note: Vectors \vec{u}_1 and \vec{u}_2 must be orthogonal!
- Plane W is spanned by vectors \vec{u}_1 and \vec{u}_2.
- Vector $\tilde{\vec{y}}$ is not in plane W.
- Vector $\hat{\vec{y}}$ is the orthogonal projection of $\tilde{\vec{y}}$ onto plane W.
- Vector $\vec{y} - \hat{\vec{y}}$ is in W^\perp.
Least-Squares

Problem: \(A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \) and \(\vec{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} \).

Solve for \(\vec{x} \) in \(A\vec{x} = \vec{b} \).

Solution:

\[
\begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 1 & 11 \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

So, there’s no solution!

Or is there?

Is there some value that’s “close enough” that we can sort of call a solution?

Is that allowed? Why can’t mathematicians just accept that there’s no solution?
The reason the system in our example has no solution is because \vec{b} is not in the span of the column vectors of matrix A.

Consider this picture:

Plane W represents $\text{Col}(A)$, spanned by the column vectors of A, which are \vec{x}_1 and \vec{x}_2.

If the system had a solution, vector \vec{b} would also be in the plane. But it isn’t, so …

What’s the closest we can get to the plane?

Although there is no \vec{x} for which $A\vec{x} = \vec{b}$, there is an $\hat{\vec{x}}$ which minimizes the distance $\|\vec{b} - A\hat{\vec{x}}\|$ between the plane and vector \vec{b}.

$\hat{\vec{x}}$ is known as the least-squares solution.

To find $\hat{\vec{x}}$, we solve the following equation:

$$A^T A \hat{\vec{x}} = A^T \vec{b}$$

The set of resulting equations are known as the normal equations.

The distance $\|\vec{b} - A\hat{\vec{x}}\|$ is known as the least-squares error.
Example 1

Find the least-squares solution \hat{x} of the system $A\hat{x} = \vec{b}$, where $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.

What is the SSE (Sum-of-Squares Error)? What is the least-squares error?
Example 2

Find the least-squares solution \hat{x} of the system $A\hat{x} = \bar{b}$, where $A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}$ and $\bar{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$.

What is the SSE (Sum-of-Squares Error)? What is the least-squares error?
Example 3
Using least squares, fit a quadratic function of the form $f(t) = c_0 + c_1 t + c_2 t^2$ to the data points $(0, 4), (1, -3), (2, -4), (3, -19)$.