Maximum and Minimum Values

If c is a number in the domain of $f(x)$. Then:

1. Global or absolute maximum is $f(c) \geq f(x)$ for all x in the domain.
2. Global or absolute minimum is $f(c) \leq f(x)$ for all x in the domain.

Now if c is a number in the open interval (a, b) also in the domain $f(x)$. Then:

3. Local or relative maximum is $f(c) \geq f(x)$ for all x in (a, b).
4. Local or relative minimum is $f(c) \leq f(x)$ for all x in (a, b).

Note: Local max/min cannot be endpoints!

Example 1

Identify each point as a local maximum or minimum value, global maximum or minimum value, or none.

![Graph of a function with points labeled A through H and the equation $y = f(x)$]
First Derivative Test

Extrema (maximum and minimum values) occur at critical points or at endpoints. A critical point is an x value where $f'(x) = 0$ or where the derivative is undefined (as long as this x value is in the function’s domain).

Note: When the problem asks you to find where the extrema are, they’re asking you to find the x values.

When they ask you to find what the extrema are, they’re asking you to find the y values.

Example 2

Using the first derivative test, find where the local maximum and minimum values of $f(x) = x^3 - 3x + 1$ occur.
Example 3
Let $f(x) = x^4 - 8x^2 + 16$.
(a) Find all intervals where $f(x)$ is increasing/decreasing.
(b) Find all local extrema.