Integration Review

Example 1 – Power rule, sine and cosine, e^x

\[
\int (3x - \sin x + e^{5x}) \, dx = \frac{3}{2} x^2 + \cos x + \frac{e^{5x}}{5} + C
\]

You can always check the answer of an integral by taking its derivative:

\[
\frac{d}{dx} \left(\frac{3}{2} x^2 + \cos x + \frac{e^{5x}}{5} + C \right) = 3x - \sin x + e^{5x}
\]

Notice that the result is exactly what you started out with in the integral.

Example 2 – Substitution

\[
\int \frac{1}{3x - 2} \, dx
\]

Let $u = 3x - 2$

Then $du = 3\, dx$... or $dx = \frac{1}{3} \, du$.

Therefore:

\[
\int \frac{1}{3x - 2} \, dx = \int \frac{1}{u} \left(\frac{1}{3} \, du \right) = \frac{1}{3} \int \frac{1}{u} \, du = \frac{1}{3} \ln |u| + C
\]

Remember to turn the answer back to the original variable:

\[
\frac{1}{3} \ln |u| + C = \frac{1}{3} \ln |3x - 2| + C
\]

\[
\int \frac{1}{3x - 2} \, dx = \frac{1}{3} \ln |3x - 2| + C
\]
Example 3 – Substitution

\[\int 5x e^{x^2} \, dx \]

Let \(u = x^2 \)
Then \(du = 2x \, dx \)

Therefore:

\[\int 5x e^{x^2} \, dx = \frac{5}{2} \int e^u \, du = \frac{5}{2} e^u + C \]

Converting back to original variable:

\[\int 5x e^{x^2} \, dx = \frac{5}{2} e^{x^2} + C \]

Checking the result:

\[\frac{d}{dx} \left(\frac{5}{2} e^{x^2} + C \right) = 5x e^{x^2} \]
Integration by Parts

Integration by parts comes from the product rule of differentiation. To derive the formula, start with a product of two functions, such as \(uv \), and take the derivative with respect to \(x \).

\[
\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}
\]

Now multiply the entire result by \(dx \).

\[
dx\left(\frac{d}{dx}(uv)\right) = \frac{du}{dx}v\,dx + u\frac{dv}{dx}\,dx
\]

Simplify:

\[
\frac{d}{dx}(uv)\,dx = v\,du + u\,dv
\]

Integrate everything:

\[
\int \frac{d}{dx}(uv)\,dx = \int v\,du + \int u\,dv
\]

\[
uv = \int v\,du + \int u\,dv
\]

Rearrange into familiar formula:

\[
\int u\,dv = uv - \int v\,du
\]

The idea with this formula is to pick for \(u \) the function that becomes “simpler” when you differentiate (\(x^2 \) becomes \(2x \), for example). Pick the \(dv \) to be the part that is differentiable. Keep in mind that the resulting \(v\,du \) must be integrable.
Example 4 – Integration by Parts

\[\int x \sin x \, dx \]

Formula: \(\int u \, dv = uv - \int v \, du \)

Which function becomes simpler when you take its derivative? Is it \(x \) or \(\sin x \)? It’s \(x \)!

Let \(u = x \) and \(dv = \sin x \, dx \)
Then \(du = dx \) and \(v = -\cos x \)

Therefore:

\[\int x \sin x \, dx = -x \cos x - \int -\cos x \, dx \]

\[
\int x \sin x \, dx = -x \cos x + \sin x + C
\]

How would you know if you picked \(u \) and \(dv \) incorrectly?
Let \(u = \sin x \) and \(dv = x \, dx \)
Then \(du = \cos x \, dx \) and \(v = \frac{x^2}{2} \)

Therefore:

\[\int x \sin x \, dx = \frac{x^2}{2} \sin x - \int \frac{x^2}{2} \cos x \, dx \]

Notice that the integral on the right-hand side is even worse than the original one!
That’s how you would know. ☺
Partial Fractions

The idea with partial fractions is to break up a fraction into fractions whose denominators are the factors of the denominator of the original fraction.

For example, we could say:

\[
\frac{5}{6} = \frac{1}{2} + \frac{1}{3}
\]

Example 5 – Partial Fractions

\[
\int \frac{3}{x^2 + 4x - 21} \, dx
\]

Rewrite the fraction with a factored denominator:

\[
\frac{3}{(x + 7)(x - 3)}
\]

Make an equation with fractions whose denominators are the factors:

\[
\frac{3}{(x + 7)(x - 3)} = \frac{A}{x + 7} + \frac{B}{x - 3}
\]

Multiply by the common denominator:

\[
(x + 7)(x - 3) \left(\frac{3}{(x + 7)(x - 3)} = \frac{A}{x + 7} + \frac{B}{x - 3} \right)
\]

\[
3 = A(x - 3) + B(x + 7)
\]

Think of the 3 as 3 + 0x and rearrange the equation into an x term and a number term:

\[
3 + 0x = (-3A + 7B) + (A + B)x
\]

Therefore, \(A + B\) must be 0, and \(A = -B\).

The \(-3A + 7B\) must be equal to 3: \(-3A + 7B = 3\)

Substitute \(A = -B\): \(3B + 7B = 3\)

Therefore, \(B = \frac{3}{10}\) and \(A = -\frac{3}{10}\).

Finally, substitute the results into the original integral and integrate:

\[
\int \frac{3}{x^2 + 4x - 21} \, dx = \int \left[\left(-\frac{3}{10} \right) \frac{1}{x + 7} + \left(\frac{3}{10} \right) \frac{1}{x - 3} \right] \, dx
\]

\[
= -\frac{3}{10} \ln|x + 7| + \frac{3}{10} \ln|x - 3| + C
\]