Single Slit Diffraction

Monochromatic Coherent Light

\[\tan \theta = \frac{y}{L} \]
\[\tan \theta \approx \sin \theta \approx \theta = \frac{y}{L} \]

\[m = \pm 1, \pm 2, \text{ etc} \]

Condition for minimum
\[D \sin \theta = m\lambda, \quad m = \pm 1, \pm 2, \text{ etc} \]
\[y \approx \frac{m\lambda L}{D} \]

Note: \(y = \frac{m\lambda L}{D} \), \(m = \pm 1, \pm 2, \text{ etc} \) locates the dark fringes

Double Slit Interference

Monochromatic Coherent Light

Assumption of infinite source distance gives plane wave at slit so that all amplitude elements are in phase.

\[\tan \theta = \frac{y}{L} \]
\[\tan \theta \approx \sin \theta \approx \theta = \frac{y}{L} \]

Condition for maximum
\[\frac{d \sin \theta}{\lambda} = m \]
\[y = \frac{m\lambda L}{d} \]
\[m = 0, \pm 1, \pm 2, \text{ etc} \]

Note: \(y = \frac{m\lambda L}{d}, \quad m = 0, \pm 1, \pm 2, \text{ etc} \) locates the bright fringes