Planes and Lines Using Some Math 4A

A plane appears as shown in the first octant of \mathbb{R}^3. It is parallel to the y axis. What is its algebraic equation?

Three points that are not co-linear define a plane.

Two points are obvious, i.e. $\overline{p}_1 = (0,0,2)$ and $\overline{p}_2 = (3,0,0)$. Since the plane is parallel to the y axis, the y coordinate may be anything as long as the x and z coordinates are correct. So $\overline{p}_3 = (3,1,0)$ is a suitable third point.

Use these three points to determine two independent directions that are parallel to the plane:

$$\overline{u} = \overline{p}_2 - \overline{p}_1 = (3,0,0) - (0,0,2) = (3,0,-2)$$

and

$$\overline{v} = \overline{p}_3 - \overline{p}_1 = (3,1,0) - (0,0,2) = (3,1,-2)$$

Note, we could also use $\overline{p}_3 - \overline{p}_2$ or the negative of each of these directions.

The cross product of two vectors is perpendicular to both vectors. Thus $\overline{n} = \overline{u} \times \overline{v}$ is perpendicular to both \overline{u} and \overline{v} and as such is normal to desired plane.

$$\overline{n} = \overline{u} \times \overline{v} = \begin{vmatrix} i & j & k \\ 3 & 0 & -2 \\ 3 & 1 & -2 \end{vmatrix} = i(0+2) + j(-6+0) + k(3-0) = (2,0,3)$$

Note: $\overline{v} \times \overline{u} = (-2,0,-3)$ and is just as good.

Points $\overline{r} = (x,y,z)$ are in the plane if

$$(\overline{r} - \overline{r}_0) \cdot \overline{n} = 0,$$

where $\overline{r}_0 = (x_0,y_0,z_0)$ is any point known to be in the plane, i.e. \overline{p}_1, or \overline{p}_2, or \overline{p}_3.

A short cut is that for a normal $\overline{n} = (a,b,c)$ then $ax + by + cz = d$ is the equation of the desired plane, with d chosen based on a known point $\overline{r}_0 = (x_0,y_0,z_0)$.

So our plane is $2x + 0y + 3z = d$, and using $\vec{r}_0 = \vec{p}_1 = (0, 0, 2)$ we find $d = 6$. Check that the other points give the same $d = 6$.

So the plane's algebraic equation is:

$$2x + 0y + 3z = 6 \quad \text{(ie } 2x + 3z = 6, \text{ just remember we are in } \mathbb{R}^3)$$

If given an algebraic equation, a parametric equation of the same plane may be obtained by solving for x or y or z as long as its coefficient is not zero. So here I will solve for x. Using Math 4A, we have:

$$\begin{bmatrix} 2 & 0 & 3 & | & 6 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 3/2 & | & 3 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}r + \begin{bmatrix} 3/2 \\ 0 \\ 1 \end{bmatrix}s, \quad r, s \in \mathbb{R}$$

or in current notation,

$$\vec{F} = (x, y, z) = (3, 0, 0) + (0, 1, 0)r + (3/2, 0, 1)s$$

$$\vec{F} = (3 - \frac{3}{2}s, \quad r, \quad s)$$

Note, when picking parameter r we are here choosing y and when picking parameter s we are here choosing z and also x changes since it depends on z. A plane is a 2-dimensional subspace of \mathbb{R}^3.

Given a parametric equation, to obtain an algebraic equation, just eliminate the parameters, i.e. r and s.

So in this case:

$$\begin{align*}
x &= 3 - \frac{3}{2}s \\
y &= r \\
z &= s
\end{align*}$$

$$2x + 3z = 6$$

The $y = r$ does not relate to others so y does not appear in the algebraic equation.
Let's pick a line in the above plane, say one that includes \(\vec{p}_1 \) and \(\vec{p}_3 \) and in parametric form moves from \(\vec{p}_1 \) to \(\vec{p}_3 \) as its parameter \(t \) changes from 0 to 1. The line's direction vector is
\[
\vec{w} = \vec{p}_3 - \vec{p}_1 = (3, 1, 0) - (0, 0, 2) = (3, 1, -2)
\]
The equation is
\[
\vec{l}(t) = (x, y, z) = \vec{p}_1 + t\vec{w} = (0, 0, 2) + (3, 1, -2)t
\]
\[
i.e. \quad \vec{l}(t) = (3t, t, 2-2t), \quad t \in \mathbb{R}^1
\]
Now an algebraic representation of this line. This consists of two simultaneous linear equations. Each is the equation of a plane and the line is their intersection, i.e., points common to both planes. Two planes always intersect if their normal directions are independent. We already have one plane, i.e., \(2x + 3z = 6 \) with normal \(\vec{n}_1 = (2, 0, 3) \) Remember, the line's direction, i.e., \(\vec{w} = (3, 1, -2) \) is perpendicular to \(\vec{n}_1 \), i.e., \((2, 0, 3) \cdot (3, 1, -2) = 0\).
A second plane must have a normal which is also perpendicular to \(\vec{w} \) and independent of \(\vec{n}_1 \). (It can be but does not need to be perpendicular to \(\vec{n}_1 \).)
The choice is easy, we need a \(\vec{n}_2 = (a_x, b_z, c_z) \) such that \(\vec{n}_2 \cdot (3, 1, -2) = 0 \) and \(\vec{n}_2 \) not a scalar multiple of \(\vec{n}_1 \). Let \(\vec{n}_2 = (1, -3, 0) \) say.
So a second plane is \(x - 3y = d \). It must include a point on the line, for example \(\vec{p}_1 = (0, 0, 2) \).
This means that \(d = 0 \). (Note \(\vec{p}_3 \) also makes \(d = 0 \).
So the second plane is \(x - 3y = 0 \).
So an algebraic representation of the line is:

\[
\begin{align*}
2x + 3z &= 6 \\
x - 3y &= 0
\end{align*}
\]

(Obviously not unique.)

Student should confirm that \(\bar{\lambda} = (3t, t, 2 - 2t) \)

satisfies both of these equations for all \(t \).

From these two equations let's recover a parametric equation for the line. Just solve the set of two equations, as in Math 4A

\[
\begin{bmatrix}
2 & 0 & 3 & \mid & 6 \\
1 & -3 & 0 & \mid & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & \frac{3}{2} & \mid & 3 \\
0 & 1 & \frac{1}{2} & \mid & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
= \begin{bmatrix}
3 \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
-\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{bmatrix} t^*
\quad \bar{\lambda}^* = (3 - \frac{3}{2} t^*, 1 - \frac{1}{2} t^*, t^*)
\]

is this same as \(\bar{\lambda} = (3t, t, 2 - 2t) \) ?

Let \(t^* = 2 - 2t \), then \(\bar{\lambda}^* = (3 - \frac{3}{2} (2 - 2t), 1 - \frac{1}{2} (2 - 2t), 2 - 2t) \)

\(\bar{\lambda}^* = (3t, t, 2 - 2t) \)

Same line, the parameters \(t \) and \(t^* \) are scaled and shifted relative to each other.

\(\bar{\lambda}^*(t^*) \) goes from \(\bar{p} \), to \(\bar{p}_3 \) as \(t^* \) goes from 2 to 0.

In previous handout the Algebraic (Vector) equation of a line is \((\bar{x} - \bar{p}) \times \bar{n} = \bar{o} \), or in current notation \((\bar{\lambda} - \bar{p}_i) \times \bar{w} = \bar{o} \)

This gives

\[
\begin{align*}
2y + z - 2 &= 0 \\
2x + 3z - 6 &= 0 \\
x - 3y &= 0
\end{align*}
\]

Each of these equations is a linear combination of the other two. So really there are only two independent equations.