Combining Springs

A single spring

\[F = k \Delta x \]

F is force applied to spring to cause \(\Delta x \) increase of length

Parallel connection of two springs

\[F = F_1 + F_2 = k_1 \Delta x + k_2 \Delta x \]

\[F = (k_1 + k_2) \Delta x \]

same as

\[k_{eq} = k_1 + k_2 \]

Have Common \(\Delta x \), Forces sum

Series connection of two springs

\[\Delta x = \Delta x_1 + \Delta x_2 \]

\[\Delta x = \frac{F}{k_1} + \frac{F}{k_2} \]

\[\Delta x = \left(\frac{1}{k_1} + \frac{1}{k_2} \right) F \]

same as

\[\Delta x = \frac{F}{k_{eq}} \]

\[\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} \]

Have Common \(F \), \(\Delta x \)'s sum

\[k_{eq} = \frac{k_1 k_2}{k_1 + k_2} \]
Parallel

\[k_1 = 2 \text{ N/m} \]
\[k_2 = 3 \text{ N/m} \]

\[k_{eq} = k_1 + k_2 = 5 \text{ N/m} \]

Same as

\[k_{eq} = 5 \text{ N/m} \]

Series

\[k_1 = 2 \text{ N/m} \]
\[k_2 = 3 \text{ N/m} \]

\[k_{eq} = \frac{k_1 \cdot k_2}{k_1 + k_2} \]
\[k_{eq} = \frac{2 \text{ N/m} \cdot 3 \text{ N/m}}{2 \text{ N/m} + 3 \text{ N/m}} \]
\[k_{eq} = \frac{6}{5} \text{ N/m} \]

Same as

\[k_{eq} = \frac{6}{5} \text{ N/m} \]