1. What is the oxidizing agent in the following reaction?

\[
Pb + PbO_2 + 2 H_2SO_4 \rightarrow 2 PbSO_4 + 2 H_2O
\]

2. How many electrons are transferred in the following reaction?

\[
2 \text{Cr}^{3+} + 3 \text{SO}_4^{2-} + 4 \text{H}_2\text{O} \rightarrow \text{Cr}_2\text{O}_7^{2-} + 3 \text{H}_2\text{SO}_3 + 2 \text{H}^+
\]

3. Which of the following is the strongest oxidizing agent?

\[
\begin{align*}
\text{Zn}^{2+} + 2e^- & \rightarrow \text{Zn} & -0.76 \text{ V} \\
2\text{H}_2\text{O} + 2e^- & \rightarrow \text{H}_2 + 2\text{OH}^- & -0.83 \text{ V} \\
\text{Mn}^{2+} + 2e^- & \rightarrow \text{Mn} & -1.18 \text{ V}
\end{align*}
\]

4. What would be the standard cell potential at 298K if the energy of the following reaction could be harnessed as a Galvanic cell?

\[
4 \text{P} + 5 \text{O}_2 \rightarrow 2 \text{P}_2\text{O}_5 \quad \Delta G^\circ = -2698 \text{ kJ}
\]

5. Write the half reaction will take place at the anode of a Galvanic cell based on the following data?

\[
\begin{align*}
\text{Cl}_2 + 2e^- & \rightarrow 2\text{Cl}^- & 1.36 \text{ V} \\
\text{I}_2 + 2e^- & \rightarrow 2\text{I}^- & 0.54 \text{ V}
\end{align*}
\]

6. A Galvanic cell is described as follows:

\[
\text{Pt} \mid \text{H}_2 (1.0 \text{ atm}) \mid \text{H}^+ (1.0 \text{M}) \mid \mid \text{Fe}^{3+} (1.0 \text{M}), \text{Fe}^{2+} (1.0 \text{M}) \mid \text{Pt}
\]

Write the half reactions that occur at the anode and cathode.

7. Consider a Galvanic cell constructed using a solid silver electrode immersed in a 1.0 M Ag\(^+\) solution and a solid nickel electrode immersed in a 1.0 M Ni\(^{2+}\) solution. Which direction will the electrons flow?

\[
\begin{align*}
\text{Ag}^+ + e^- & \rightarrow \text{Ag} & 0.80 \text{ V} \\
\text{Ni}^{2+} + 2e^- & \rightarrow \text{Ni} & -0.23 \text{ V}
\end{align*}
\]

8. Determine the standard potential for the following reaction at 298K: \(\text{PbS} \rightleftharpoons \text{Pb}^{2+} + \text{S}^{2-}\) \(K = 8.0 \times 10^{-28}\)

Based on your answer; determine the standard reduction potential for the following half reaction:

\[
\text{PbS} + 2e^- \rightarrow \text{Pb} + \text{S}^{2-} \quad E^\circ = ???
\]

Note: \(\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb} \quad E^\circ = -0.13 \text{ V}\)

9. What can silver spontaneously reduce based on the following data?

\[
\begin{align*}
\text{Cl}_2 + 2e^- & \rightarrow 2\text{Cl}^- & 1.36 \text{ V} \\
\text{Br}_2 + 2e^- & \rightarrow 2\text{Br}^- & 1.09 \text{ V} \\
\text{Ag}^+ + e^- & \rightarrow \text{Ag} & 0.80 \text{ V} \\
\text{Fe}^{3+} + e^- & \rightarrow \text{Fe}^{2+} & 0.77\text{V} \\
\text{Zn}^{2+} + 2e^- & \rightarrow \text{Zn} & -0.76 \text{ V}
\end{align*}
\]

10. Will solid lead dissolve in a 1.0M solution of NiCl\(_2\)?

\[
\begin{align*}
\text{Cl}_2 + 2e^- & \rightarrow 2\text{Cl}^- & 1.36 \text{ V} \\
\text{Pb}^{2+} + 2e^- & \rightarrow \text{Pb} & -0.13 \text{ V} \\
\text{Ni}^{2+} + 2e^- & \rightarrow \text{Ni} & -0.23 \text{ V}
\end{align*}
\]

11. Predict what will happen when a piece of Sn (s) is placed in an aqueous solution of FeCl\(_2\).
\[
\begin{align*}
\text{Cl}_2 + 2\text{e}^- & \rightarrow 2\text{Cl}^- & 1.36 \text{ V} \\
\text{Sn}^{2+} + 2\text{e}^- & \rightarrow \text{Sn} & -0.44 \text{ V} \\
\text{Fe}^{2+} + 2\text{e}^- & \rightarrow \text{Fe} & -0.14 \text{ V} \\
\end{align*}
\]

a. \(\text{Sn}^{2+}\) will be produced
b. \(\text{Cl}_2\) will be produced
c. \(\text{Fe}\) will be produced
d. No reaction will occur
e. More than one of these will occur

12. You want to plate out nickel from a nickel (III) nitrate solution by inserting a piece of metal. Should you use copper, zinc, either copper or zinc, neither copper or zinc will plate out nickel.

\[
\begin{align*}
\text{Cu}^{2+} + 2\text{e}^- & \rightarrow \text{Cu} & 0.34 \text{ V} \\
\text{Ni}^{2+} + 2\text{e}^- & \rightarrow \text{Ni} & -0.23 \text{ V} \\
\text{Zn}^{2+} + 2\text{e}^- & \rightarrow \text{Zn} & -0.76 \text{ V} \\
\end{align*}
\]

13. Based on the following information, what can reduce \(\text{Ni}^{2+}\) but not \(\text{Al}^{3+}\)?

\[
\begin{align*}
\text{Cu}^{2+} + 2\text{e}^- & \rightarrow \text{Cu} & 0.34 \text{ V} \\
\text{Ni}^{2+} + 2\text{e}^- & \rightarrow \text{Ni} & -0.23 \text{ V} \\
\text{Fe}^{2+} + 2\text{e}^- & \rightarrow \text{Fe} & -0.44 \text{ V} \\
2\text{H}_2\text{O} + 2\text{e}^- & \rightarrow \text{H}_2 + 2\text{OH}^- & -0.83 \text{ V} \\
\text{Al}^{3+} + 3\text{e}^- & \rightarrow \text{Al} & -1.66 \text{ V} \\
\text{Na}^+ + \text{e}^- & \rightarrow \text{Na} & -2.71 \text{ V} \\
\end{align*}
\]

14. Consider a Galvanic cell based on the following half reactions:

\[
\begin{align*}
\text{Pb}^{2+} + 2\text{e}^- & \rightarrow \text{Pb} & -0.13 \text{ V} \\
\text{Cr}^{3+} + 3\text{e}^- & \rightarrow \text{Cr} & -0.73 \text{ V} \\
\end{align*}
\]

Determine what will happen to the cell potential for the following if initially \([\text{Pb}^{2+}] = 1.0\text{M}\) and \([\text{Cr}^{3+}] = 1.0\text{M}\).

a. Water is added to both sides causing the volume to double in each compartment.

b. Sodium hydroxide is added to the chromium half cell causing \(\text{Cr(OH)}_3\) to precipitate.

c. The mass of the lead electrode is doubled.

15. Consider the Galvanic cell at 25 °C described as follows:

\[
\begin{align*}
\text{X} | \text{X}^{2+} | | \text{Y}^{3+} | \text{Y}
\end{align*}
\]

Where X and Y are unknown metals. Given the standard reduction potential for \(\text{Y}^{3+}\) is 1.5 V and that K for the overall reaction in this Galvanic cell is \(1.2 \times 10^{20}\) what is the standard reduction potential of \(\text{X}^{2+}\)?

16. Calculate the potential for the following galvanic cell at 320K.
17. Consider the Galvanic cell below to answer the following:

Initially the masses of the aluminum electrode and the zinc electrode are 116 g and 150 g respectively. Assuming the reaction goes to completion calculate the final mass of the aluminum electrode.

18. Calculate ΔG for the following electrochemical cell at 298K.

$$\text{Mg} | \text{Mg}^{2+} \ (2.3 \ M) \ || \ \text{Cr}^{3+} \ (0.16M) | \text{Cr}$$

- $\text{Cr}^{3+} + 3e^- \rightarrow \text{Cr} \quad -0.73 \ V$
- $\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg} \quad -2.37 \ V$

19. Consider the following cell:

$$\text{Al} \ (s) | \text{Al}^{3+} \ (1.0 \ M) \ || \ \text{Pb}^{2+} \ (1.0 \ M) | \text{Pb} \ (s)$$

- $\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb} \quad -0.13 \ V$
- $\text{Al}^{3+} + 3e^- \rightarrow \text{Al} \quad -1.66 \ V$

Calculate the cell potential for the reaction when the $[\text{Al}^{3+}]$ has changed by 0.66 M at 25 °C.

20. A concentration cell is created using copper electrodes and aqueous Cu$^{2+}$ solutions. Which of the following will cause a positive cell potential if the concentration of copper (II) ion is 1.0 M at the cathode?

- $\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \quad 0.34 \ V$

 a. The concentration of the copper (II) ion at the anode must be less than 1.0 M
 b. The concentration of the copper (II) ion at the anode must be greater than 1.0 M
 c. The concentration of the copper (II) ion at the anode must be equal to 1.0 M
 d. The cell potential will be zero regardless of the concentration of the copper (II) ion

21. A concentration cell is constructed in which one half cell contains a Cr (s) electrode immersed in a 0.21 M Cr$^{3+}$ solution and the other half cell contains a Cr (s) electrode immersed in a 1.8 M Cr$^{3+}$ solution. Which direction will the potassium ions flow if the salt bridge is composed of KNO$_3$ solution?
22. Consider the following concentration cell at 298K: \(\text{Fe} | \text{Fe}^{2+} (0.001 \text{ M}) || \text{Fe}^{2+} (0.1 \text{ M}) | \text{Fe} \) Calculate the cell potential if the standard reduction potential for \(\text{Fe}^{2+} \) is \(-0.44 \text{ V}\).

23. Three separate solutions are electrolyzed using the same current to plate out solid metals. Which of the following will take the longest amount of time?
 a. Plating 5 grams of solid Al from an \(\text{Al}^{3+} \) solution
 b. Plating 15 grams of solid Ca from a \(\text{Ca}^{2+} \) solution
 c. Plating 40 grams of solid Rb from a \(\text{Rb}^{+} \) solution
 d. All three processes take the same amount of time

24. How long will it take (in min) to plate out 10.0 g of Bi from a solution of \(\text{Bi}^{3+} \) using a current of 25.0 A?

25. In an electrolysis experiment, a student passes the same current through two electrolytic cells for the same amount of time. One cell contains \(\text{Ag}^{+} \) ion and the other contains \(\text{Mn}^{2+} \). Determine the value of \(x \) if 7.6 grams of Ag and 0.77 grams of Mn were plated out.

26. To determine the molar mass of an unknown metal \(M \), the metal is plated out from a solution containing \(M^{3+} \) ions. Determine the molar mass of the metal if 61.8 grams of \(M \) is plated out after electrolyzing the solution with a current of 25.1 A for 85 minutes.

27. Consider an electrochemical cell described as follows: \(\text{Mg(s)} | \text{Mg}^{2+} (0.85 \text{ M}) || \text{Al}^{3+} (0.85 \text{ M}) | \text{Al(s)} \) If each compartment has a volume of 1.0L, what will be the concentration of the \(\text{Al}^{3+} \) after the cell delivers 0.22 A of current for 31.6 hr?

28. A solution of NaCl is electrolyzed to produce \(\text{Cl}_2 \) gas. What volume of \(\text{Cl}_2 \) at 298 K and 1 atm is generated if the solution is exposed to a current of 54 A for 13 minutes?