Reactivity

\[\text{CH}_3\text{C} = \text{C} > \text{CH}_3 \]

<table>
<thead>
<tr>
<th>Conjugate Acid</th>
<th>(\text{pK}_a)</th>
<th>(\text{BP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ig</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why is ___ more reactive than ___

1.
2.
3.

#1 Rule:

1.
\[\text{CH}_3\text{C} = \text{C} + 2\text{NH}_2\text{CH}_3 \rightarrow \]

 - Why 2 amines?

2.
\[\text{C}_6\text{H}_5\text{C} = \text{C} + \text{CH}_3\text{OH} \rightarrow \]
3. Estar Hydrolysis (Acid cat)
\[\text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{H} + \text{H}_2\text{O} \xrightarrow{\text{HCl}} \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + \text{CH}_2\text{CO}_2\text{H} \]

-What does the catalyst do? (2 slow steps)
 1.
 2.

4. Hydroxide-Ion Promoted Estar Transesterification (Conjugate Base)

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{OCH}_3 + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + \text{CH}_3\text{OCH}_3 \]

What does the conjugate base do?
 1.
 2.

5. \[\text{30 Esters} \]
\[\text{CH}_3\text{CH}_2\text{CH}_2\text{OCH}_3 + \text{HOCH}_2\text{CH}_3 \xrightarrow{\text{HCl}} \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + \text{CH}_3\text{OCH}_2\text{CH}_3 \]
6. \[\text{C} = \text{O} + \text{CH}_3\text{OH} \xrightarrow{\text{H}^+} \]

What does X8 CH3OH do?

7. \[\text{CH}_3\text{C} = \text{OH} + \text{NH}_2\text{CH}_3 \xrightarrow{\text{?}} \]

8. \[\text{CH}_3\text{C} = \text{OH} + \text{Cl} \xrightarrow{\text{?}} \text{Cl} - \text{P} - \text{Cl} \]

9. \[\text{CH}_3\text{CO} = \text{OH} + \text{Br} \xrightarrow{\text{?}} \text{Br} - \text{P} - \text{Br} \]

10. \[\text{NH}_2\text{NH}_2 + \text{HOC} = \text{H} \xrightarrow{\text{HCl}} \]

What does acid do?

1.

2.

11. \[\text{NH}_2\text{NH}_2 \xrightarrow{\text{P} \text{O} \text{S}} \xrightarrow{\text{H}_2\text{O}} \]
What kind of reaction is this?

13.

14.

4.5

15.

16.

17.

18.
20.

\[
\text{CH}_3\text{CH}_2\text{C}=\text{O} + \text{NH}_2\text{CH}_3 \xrightarrow{\text{N}_{2}\text{H}_4} \text{CH}_2\text{CH}_3
\]

The change is known as a ____________

21. Wolff-Kishner Reaction

\[
\text{CH}_3\text{C}-\text{CH}_3 + \text{NH}_2\text{NH}_2 \xrightarrow{\text{OH}\text{t}} \text{NH}_2\text{N}_2\text{H}_2
\]

22.

\[
\text{H}-\text{C}\backslash\text{H} + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{H}^+ \text{CH}_3
\]

If the \([\text{H}]\) were \(\text{CH}_3\), how would this reaction be different? Why?
1.
2.

What is this called?
23. \[\text{CH}_3\text{CH}_2\text{C} - \text{H} \quad \text{CH}_3\text{OH} \xrightarrow{\text{HCl}} \]

One -OH and one -OCH_3 group is called _____

Two -OCH_3 groups is called _____

Why is this stable

24. \[\text{C}_6\text{H}_5\text{C} - \text{CH}_3 + \text{HOCH}_2\text{CH}_2 \xrightarrow{\text{HCl}} \]

[Diagram of chemical structures]

[Diagram showing conversion of one structure to the other]
List reagents used
Don't forget cats.
Is the product o/p or m??

- Halogenation:
- Sulfonation:
- Friedel-Crafts:
- Nitration:

Things to remember about Nitr:

 ولوظفة:

- List reagents used
 - Don't forget cats.
 - Is the product o/p or m??

- Halogenation:
- Sulfonation:
- Friedel-Crafts:
- Nitration:
TABLE 14.1 The Effects of Substituents on the Reactivity of a Benzene Ring

Toward Electrophilic Substitution

Activating substituents
- Donate by res
 - to have lone pairs
- Withdraw by electronegativity

Deactivating substituents
- Electron withdraw
 - Electrons to pull into ring
- Can pull electrons out of benzene ring by res!

Activators:
- Some how putting electrons into benzene ring
 - Make O-H bond stronger
 - Harder for H to fall off

Deactivators:
- Some how pulling electrons out of benzene ring
 - Weaken the O-H bond make easier for H to fall off

Standard of comparison

<table>
<thead>
<tr>
<th>Substituent</th>
<th>Most activating</th>
<th>Strongly activating</th>
<th>Moderately activating</th>
<th>Weakly activating</th>
<th>Most deactivating</th>
</tr>
</thead>
<tbody>
<tr>
<td>-NH₂</td>
<td>-NHR</td>
<td>-NR₂</td>
<td>-OH</td>
<td>-OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-NHCR</td>
<td>-OCR</td>
<td>-R</td>
<td>-RC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ortho/para directing

Meta directing

Acidity

- Activators:
 - Some how putting electrons into benzene ring
 - Make O-H bond stronger
 - Harder for H to fall off

- Deactivators:
 - Some how pulling electrons out of benzene ring
 - Weaken the O-H bond make easier for H to fall off

(aka more acidic)