SN2 vs SN1 vs E2 vs E1

Bimolecular Conditions

\[\text{SN}_2 / E_2 \]

- Good nuc / Strong base in high concentration

\[\text{rate} = k [\text{Alkyl Halide}] [\text{Nuc}/\text{Base}] \uparrow \]

Unimolecular Conditions

\[\text{SN}_1 / E_1 \]

- Poor nuc / Weak base in low [\(\cdot \)]

\(\text{(discourages } \text{SN}_2 \text{)} \)

Alkyl Halide

1°

- \(\text{SN}_2 \) more than \(\text{E}_2 \)
 - No \(\text{SN}_1 \) or \(\text{E}_1 \) (cr)

2°

- Bulkier base
- Stronger base
- Higher temp

\(\{ \text{promotes } \text{E}_2 \text{ over } \text{SN}_2 \} \)

- Get both \(\text{SN}_1 \) \& \(\text{E}_1 \)

3°

- Get \(\text{SN}_1 \) \& \(\text{E}_1 \) \& \(\text{E}_2 \)

- No \(\text{SN}_2 \)

The *bulkier* the base/nuc & the bulkier the alkyl halide, the greater the amount of elimination in all cases.