Angles of a Triangle

Let's have some fun with

\[\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| ||\mathbf{v}||} \right) \]

Find the value of the vertex angles of a triangle illustrated in \(\mathbb{R}^3 \):

\[(2, 2, 5) \]
\[(3, 4, -3) \]
\[\mathbf{u} = (0, 0, 0) - (2, 2, 5) = (-2, -2, -5) \]
\[\mathbf{v} = (3, 4, -3) - (2, 2, 5) = (1, 2, -8) \]

To evaluate \(\theta_1 \), I need \(\mathbf{u} \) and \(\mathbf{v} \) as shown.

Notice, both \(\mathbf{u} \) and \(\mathbf{v} \) are oriented with their tails at the \(\theta_1 \) vertex. Each vector is then its head coordinate less its tail coordinate.

\[\mathbf{u} \cdot \mathbf{v} = -2 \cdot 4 + 40 = 34 \]
\[||\mathbf{u}|| = \sqrt{4 + 4 + 25} = \sqrt{33} \]
\[||\mathbf{v}|| = \sqrt{1 + 4 + 64} = \sqrt{69} \]
\[\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| ||\mathbf{v}||} = \frac{34}{\sqrt{33} \sqrt{69}} \approx 0.712521 \]
\[\theta_1 = \cos^{-1}(0.712521) = 44.56^\circ \]

Students do \(\theta_2 \) and \(\theta_3 \).

Answer: \[\theta_2 = \cos^{-1}\left(\frac{-1}{\sqrt{33} \sqrt{34}} \right) \approx 91.71^\circ \]

\[\theta_3 = \cos^{-1}\left(\frac{35}{\sqrt{69} \sqrt{34}} \right) \approx 43.73^\circ \]