Homework #2, Problem 27

Assume \(p \propto d^n \rightarrow p = c \cdot d^n \)

Take \(\ln \) each side \(\ln p = \ln c + n \ln d \)

(\(\ln(ab) = \ln a + \ln b \) and \(\ln(a^b) = b \cdot \ln a \))

\(\ln p = \ln c + n \ln d \) is like

\(y = b + m \cdot x \) a line

with slope \(m \) and \(y \) intercept \(b \)

so \(\ln p = y \)

\(\ln d = x \)

then \(n = m \)

and \(\ln c = b \rightarrow e^{\ln c} = e^b \)

\(c = e^b \)

So for Jupiter and Neptune,

plot \(\ln d \) as an \(x \) coordinate

plot \(\ln p \) as a \(y \) coordinate

do for Jupiter and do for Neptune

Have a line (i.e. two points defining a line)

Find slope of line \(m \) is \(n \)

Find \(y \) intercept \(b \) then \(c = e^b \)

\(p = c \cdot d^n \)

Note: To obtain WebWork desired solution, \(d \) is in units of \(1 \times 10^6 \) km,

and \(p \) is in units of days