Chapter 19 Thermodynamic Processes

These are for an ideal gas.

In all cases: \(\Delta U = Q - W \)

\(\Delta U \) change in gas internal energy

\(Q \) heat energy into gas

\(W \) work done by gas, thus if \(W \) is negative, work is done on gas

Isochoric (Constant volume)

\[W = n C_v (T_2 - T_1) \]

Isothermal (Constant temperature)

\[W = n C_v (T_2 - T_1) \]

Adiabatic (Q = 0, no heat transfer)

\[\frac{p V^\gamma}{\gamma - 1} = \text{Constant} \]

\[T V^{\gamma - 1} = \text{Constant} \]

\(\gamma = \frac{C_p}{C_v} \)

\[T = \text{Constant} \]

\[p^{\gamma - 1} = \text{Constant} \]

\[W = n C_v (T_1 - T_2) \]

\[W = \frac{C_v}{R} (p_1 V_1 - p_2 V_2) \]

\[W = \frac{1}{\gamma - 1} (p_1 V_1 - p_2 V_2) \]

\[\Delta U = -W \]

\[\Delta U = n C_v (T_2 - T_1) \]
Note: for ideal gas $C_V = C_p - R$

Monatomic: $C_V = \frac{3}{2} R$, $C_p = \frac{5}{2} R$

Diatomic: $C_V = \frac{5}{2} R$, $C_p = \frac{7}{2} R$

Polyatomic: $C_V = 3R$, $C_p = 4R$

\[\frac{C_V}{R} = \frac{C_V}{C_p - C_V} = \frac{1}{\gamma - 1} \]

Isochoric (Constant Volume)

\[W = 0 \]
\[Q = nC_V(T_2 - T_1) \]
\[\Delta U = Q \]

Isothermal (Constant temperature)

Isothermal process

\[W = \int p \, dV \quad pV = nRT \]
\[p = \frac{nRT}{V} \]

\[W = \int \frac{nRT}{V} \, dV = nRT \int \frac{dV}{V} = nRT \ln \left(\frac{V_2}{V_1} \right) \]
\[= nRT \ln \left(\frac{p_1}{p_2} \right) \]

(Note: T = Constant, $pV = nRT$ = Constant
Thus $p_1V_1 = p_2V_2$, $\frac{p_1}{p_2} = \frac{V_2}{V_1}$)

\[\Delta U = 0 \]
\[Q = W \]

Ideal Gas $pV = nRT$

\[R = 8.314 \text{ J/mol K} = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1} \]
\[1 \text{ atm} = 1.013 \times 10^5 \text{ Pa} \]