Matrix Inverse

The algebra of scalars gives:
Given \(ax = b \)
\[a^{-1}ax = a^{-1}b \quad a \neq 0 \]
\[1x = a^{-1}b \]
\[x = a^{-1}b = \frac{b}{a} \]

There is no division by a matrix, but there is a matrix inverse, denoted as \(A^{-1} \). A must be a square matrix, and even then, a given matrix \(A \) may not have an inverse.

Given \(A\bar{x} = \bar{b} \)
\[A^{-1}A\bar{x} = A^{-1}\bar{b} \]
\[I\bar{x} = A^{-1}\bar{b} \quad \text{This only works} \]
\[\bar{x} = A^{-1}\bar{b} \quad \text{when} \bar{x} \text{has a unique solution.} \]

The \(-1\) is not a power, ie. \(A^{-1} \neq \frac{1}{A} \), it is just naming that \(A^{-1} \) is the inverse of \(A \).

Note that \(I \) is an \(n \times n \) matrix consisting of 1's down the diagonal and 0's elsewhere.
\[I\bar{v} = \bar{v}I = \bar{v} \quad \text{and} \quad IA = AI = A \]

Remember that in general, \(AB \neq BA \).

Some properties of the matrix inverse are:
\[A^{-1}A = AA^{-1} = I \]
\[(A^{-1})^{-1} = A \]
\[(AB)^{-1} = B^{-1}A^{-1} \]
\[(A^T)^{-1} = (A^{-1})^T \]
In all cases, \(A \) and \(B \) assumed to be invertible.
How to find A^{-1} given A?

- First, A must be a square matrix, i.e., $n \times n$.
- Even then, A^{-1} does not exist for all A's.
- Our preferred process when $n \geq 3$ is:
 Augment A with the $n \times n$ identity matrix.
 Using EROS, reduce A to RREF.
 \[[A; I] \xrightarrow{\text{RREF}} [I; A^{-1}] \]
 On the right after RREF, if A has changed to I, then A^{-1} is in the augmenting location. If the RREF form of A is not I, then A^{-1} does not exist.

- When A is of dimension 2×2, this process still works, however it is easy to memorize the answer. For
 \[
 A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad A^{-1} = \begin{bmatrix} d-b & -b \\ \frac{c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}
 \]
 Note: this inverse does not exist if $ad-bc = 0$.

This term, $ad-bc$, is called the determinant of the given 2×2 matrix A.
The determinant generalizes and is a unique number for any $n \times n$ matrix, and in general, A^{-1} exists \iff $\det A \neq 0$.

Finding the determinant, $\det A$, will be our next topic.
Example: Given a 2x2 matrix, $A = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix}$, find A^{-1}.

$A^{-1} = \begin{bmatrix} -6 & 4 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -3/2 & 1 \\ -1 & 1/2 \end{bmatrix}$

Check: $AA^{-1} = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix} \begin{bmatrix} -3/2 & 1 \\ -1 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

For Student: Given $A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$, find A^{-1} and check.

Given $A = \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix}$, find A^{-1}

Answers: For first, $A^{-1} = \begin{bmatrix} -5 & 2 \\ 8 & -3 \end{bmatrix}$ For second, A^{-1} does not exist.

Example: Given a 3x3 matrix, $A = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, find A^{-1}.

Form $\begin{bmatrix} 1 & -3 & 0 & 1 & 0 & 0 \\ 2 & -5 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ Do EROS to reach RREF

$R_2^* = R_2 - 2R_1$ $\begin{bmatrix} 1 & -3 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$

$R_1^* = R_1 + 3R_2$ $\begin{bmatrix} 1 & 0 & 0 & 5 & 3 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{bmatrix}$

Successful, so $A^{-1} = \begin{bmatrix} 5 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Check: $AA^{-1} = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

For Student: Given $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, find A^{-1} and check.

Answer: $A^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$
If we have $A\vec{x} = \vec{b}$ and a unique solution then the answer for \vec{x} is

$$\vec{x} = A^{-1}\vec{b}$$

But why would we do the solution this way instead of

$$[A;\vec{b}] \xrightarrow{\text{RREF}}$$

This is easier since we have only one augmenting column.

Finding A^{-1} is useful if there is a single matrix A but many different vectors \vec{b}. Then once A^{-1} is found it can be used repeatedly with the different \vec{b} vectors by simple matrix-vector multiplication.

Also, there are numerous more advanced uses of matrices in which an inverse of a matrix is needed. One example is optimal control theory.