Matrix Inverse

The algebra of scalars gives:
Given \(ax = b \)
\[a^{-1}ax = a^{-1}b, \quad a \neq 0 \]
\[1x = a^{-1}b \]
\[x = a^{-1}b = \frac{b}{a} \]

There is no division by a matrix, but there is a matrix inverse, denoted as \(A^{-1} \). A must be a square matrix, and even then, a given matrix \(A \) may not have an inverse.

Given \(A\bar{x} = \bar{b} \)
\[A^{-1}A\bar{x} = A^{-1}\bar{b} \]
\[I\bar{x} = A^{-1}\bar{b} \quad \text{This only works} \]
\[\bar{x} = A^{-1}\bar{b} \quad \text{when } \bar{x} \text{ has a unique solution.} \]

The \(-1\) is not a power, i.e. \(A^{-1} \neq \frac{1}{A} \), it is just naming that \(A^{-1} \) is the inverse of \(A \).

Note that \(I \) is an \(n \times n \) matrix consisting of \(1 \)'s down the diagonal and \(0 \)'s elsewhere.
\[I\bar{x} = \bar{y}I = \bar{y} \quad \text{and} \quad IA = AI = A \]

Remember that in general \(AB \neq BA \).

Some properties of the matrix inverse are:
\[A^{-1}A = AA^{-1} = I \]
\[(A^{-1})^{-1} = A \quad \text{In all cases, } A \text{ and} \]
\[(AB)^{-1} = B^{-1}A^{-1} \quad B \text{ assumed to be} \]
\[(A^T)^{-1} = (A^{-1})^T \quad \text{invertible.} \]
How to find A^{-1} given A?

- First, A must be a square matrix, i.e. $n \times n$.
- Even then, A^{-1} does not exist for all A's.
- Our preferred process when $n \geq 3$ is:

 Augment A with the $n \times n$ identity matrix. Using EROS, reduce A to RREF.

 $[A: I] \xrightarrow{\text{RREF}} [I: A^{-1}]$

 On the right after RREF, if A has changed to I, then A^{-1} is in the augmenting location. If the RREF form of A is not I, then A^{-1} does not exist.

- When A is of dimension 2×2, this process still works, however it is easy to memorize the answer. For

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $A^{-1} = \begin{bmatrix} d-b \\ -c & a \end{bmatrix} = \begin{bmatrix} d & -b \\ \frac{d-c}{ad-bc} & \frac{ad-bc}{ad-bc} \\ -c & a \end{bmatrix}$

 Note: this inverse does not exist if $ad-bc = 0$.

 This term, $ad-bc$, is called the determinant of the given 2×2 matrix A. The determinant generalizes and is a unique number for any $n \times n$ matrix, and in general, A^{-1} exists $\iff \det A \neq 0$.

Finding the determinant, $\det A$, will be our next topic.
Example: Given a 2x2 matrix, \(A = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix} \), find \(A^{-1} \).

\[
A^{-1} = \begin{bmatrix} -6 & 4 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -3/2 & 1 \\ -1 & 1/2 \end{bmatrix}
\]

\(-12+16\)

Check: \(AA^{-1} = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix} \begin{bmatrix} -3/2 & 1 \\ -1 & 1/2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I\)

For Student: Given \(A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix} \), Find \(A^{-1} \) and check.

Given \(A = \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix} \), Find \(A^{-1} \)

Answers: For first, \(A^{-1} = \begin{bmatrix} 3 & 2 \\ 8 & -3 \end{bmatrix} \) For second, \(A^{-1} \) does not exist.

Example: Given a 3x3 matrix, \(A = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 1 & 1 \end{bmatrix} \), find \(A^{-1} \).

Form \(\begin{bmatrix} 1 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 1 & 1 \end{bmatrix} \) Do EROS to reach RREF

\[
R_2^* = R_2 - 2R_1 \\
\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix}
\]

\[
R_1^* = R_1 + 3R_2 \\
\begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix}
\]

\[
R_3^* = R_3 + R_2 \\
\begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}
\]

Successful, so \(A^{-1} = \begin{bmatrix} -5 & 3 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \)

Check: \(AA^{-1} = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -5 & 3 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

For Student: Given \(A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \), Find \(A^{-1} \) and check.

Answer: \(A^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix} \)
If we have $A\bar{x} = \bar{b}$ and a unique solution then the answer for \bar{x} is

$$\bar{x} = A^{-1}\bar{b}$$

But why would we do the solution this way instead of

$$[A; \bar{b}] \xrightarrow{\text{RREF}} ?$$

This is easier since we have only one augmenting column.

Finding A^{-1} is useful if there is a single matrix A but many different vectors \bar{b}. Then once A^{-1} is found it can be used repeatedly with the different \bar{b} vectors by simple matrix-vector multiplication.

Also, there are numerous more advanced uses of matrices in which an inverse of a matrix is needed. One example is optimal control theory.