Vector Spaces and Subspaces

Vector Space:

A vector space \(\mathbb{V} \) is a nonempty collection of objects called vectors for which are defined the operations

- vector addition, denoted \(\bar{x} + \bar{y} \), and
- scalar multiplication (multiplication by a real constant), denoted \(c \bar{x} \),

that satisfy the following properties for all \(\bar{x}, \bar{y}, \bar{z} \in \mathbb{V} \) and \(c, d \in \mathbb{R} \).

Closure Properties:
1. \(\bar{x} + \bar{y} \in \mathbb{V} \).
2. \(c \bar{x} \in \mathbb{V} \).

Addition Properties:
3. There is a zero vector \(\bar{0} \) in \(\mathbb{V} \) such that \(\bar{x} + \bar{0} = \bar{x} \). \(\text{(Additive Identity)} \)
4. For every vector \(\bar{x} \in \mathbb{V} \), there is a vector \(-\bar{x} \) in \(\mathbb{V} \) (its negative) such that \(\bar{x} + (-\bar{x}) = \bar{0} \). \(\text{(Additive Inverse)} \)
5. \((\bar{x} + \bar{y}) + \bar{z} = \bar{x} + (\bar{y} + \bar{z}) \). \(\text{(Associativity)} \)
6. \(\bar{x} + \bar{y} = \bar{y} + \bar{x} \). \(\text{(Commutativity)} \)

Scalar Multiplication Properties:
7. \(1\bar{x} = \bar{x} \). \(\text{(Scalar Multiplicative Identity)} \)
8. \(c(\bar{x} + \bar{y}) = c\bar{x} + c\bar{y} \). \(\text{(First Distributive Property)} \)
9. \((c + d)\bar{x} = c\bar{x} + d\bar{x} \). \(\text{(Second Distributive Property)} \)
10. \(c(d\bar{x}) = (cd)\bar{x} \). \(\text{(Associativity)} \)

Vector Subspaces:

Vector Subspace Theorem
A nonempty subset \(\mathbb{W} \) of a vector space \(\mathbb{V} \) is a subspace of \(\mathbb{V} \) if it is closed under addition and scalar multiplication:

(i) If \(\bar{u}, \bar{v} \in \mathbb{W} \), then \(\bar{u} + \bar{v} \in \mathbb{W} \).
(ii) If \(\bar{u} \in \mathbb{W} \) and \(c \in \mathbb{R} \), then \(c\bar{u} \in \mathbb{W} \).

The Zero-Space Check:
The zero-space \(\{ \bar{0} \} \) is always a subspace of any vector space. If \(\bar{0} \) is not in \(\mathbb{W} \), then \(\mathbb{W} \) is empty and is not a subspace.
To be a subspace of \mathbb{R}^3, it must satisfy the following:

1. All multiples of v are in V.
2. If $v_1, v_2 \in V$, then $v_1 + v_2 \in V$.
3. The zero vector 0 is considered to be in V.

The only possible subspace of \mathbb{R}^3 are:
- A line through 0.
- The plane $z = 0$.

Vector Spaces

- **Definition of a Vector Space (Example 1)**
 - A set V of objects (vectors) together with two operations: addition and scalar multiplication, such that:
 1. Closure under addition: If $u, v \in V$, then $u + v \in V$.
 2. Association law: $(u + v) + w = u + (v + w)$ for all $u, v, w \in V$.
 3. Identity element of addition: There exists an element $0 \in V$ such that $u + 0 = u$ for all $u \in V$.
 4. Inverse element of addition: For each $u \in V$, there exists an element $-u \in V$ such that $u + (-u) = 0$.
 5. Identity element of scalar multiplication: $1u = u$ for all $u \in V$.
 6. Compatibility of scalar multiplication with field multiplication: $c(u + v) = cu + cv$ for all $c \in \mathbb{R}$ and $u, v \in V$.
 7. Distributivity of scalar multiplication over vector addition: $(c + d)u = cu + du$ and $c(u + v) = cu + cv$ for all $c, d \in \mathbb{R}$ and $u, v \in V$.

Example 2: Consider \mathbb{R}^2 with the usual definition of vector addition and scalar multiplication. Is \mathbb{R}^2 a vector space?

- **Solution**
 - Yes, \mathbb{R}^2 satisfies all the properties of a vector space.

- **Subspaces**
 - A subspace of a vector space is a subset that is itself a vector space.
 - Example: \mathbb{R}^2 itself is a subspace of \mathbb{R}^2.

Some Problems

1. Find the possible subspaces of \mathbb{R}^2.
2. Prove that the set S of all vectors x such that $x \cdot x = 0$ is a subspace of \mathbb{R}^2.

Span of a Set of Vectors

Let $S = \{v_1, v_2, \ldots, v_n\}$ be a set of vectors in \mathbb{R}^n. The **span** of S, denoted as $\text{span}(S)$, is the set of all linear combinations of vectors in S. That is, if a_1, a_2, \ldots, a_n are scalars, then $\text{span}(S) = \{a_1v_1 + a_2v_2 + \cdots + a_nv_n | a_i \in \mathbb{R}\}$.

Example: Find the span of the set $S = \{v_1, v_2\}$ where $v_1 = (1, 0)$ and $v_2 = (0, 1)$.

- **Solution**
 - The span of S is \mathbb{R}^2 itself, since any vector in \mathbb{R}^2 can be written as a linear combination of v_1 and v_2.

Immediate Results

- Any vector x can be written as a linear combination of any vector x.
- Any vector x can be scaled by any scalar c.
- The zero vector 0 is in $\text{span}(S)$.
- If $x \in \text{span}(S)$, then $-x \in \text{span}(S)$.
- If $x_1, x_2 \in \text{span}(S)$, then $x_1 + x_2 \in \text{span}(S)$.
- If $x \in \text{span}(S)$ and $c \in \mathbb{R}$, then $cx \in \text{span}(S)$.