1. An object initially at rest breaks up into two pieces of unequal masses when a spring-loaded device is released. Let \(K_1 \) be the kinetic energy of the larger mass and \(K_2 \) that of the smaller mass right after they separate. Which of the following statements is correct?

(A) \(K_1 > K_2 \)
(B) \(K_1 < K_2 \)
(C) \(K_1 = K_2 \)

Equal magnitude of momentum \(K = \frac{1}{2} m v^2 \) and \(p = m v \) combine to form \(K = \frac{1}{2} p_m \) for smaller mass.

2. A railroad car of mass \(m \) and speed \(v \) collides and sticks to an identical railroad car that is initially at rest. After the collision, the kinetic energy of the system is

(A) \(\frac{1}{2} m v^2 \)
(B) \(\frac{1}{2} m v^2 \)
(C) \(\frac{1}{4} m v^2 \)
(D) \(\frac{1}{6} m v^2 \)
(E) \(m v^2 \)

\(\Sigma E_{ext} = 0 \rightarrow \Delta p = 0 \) \(p_i = p_f \), \(p_i = m v, \) \(p_f = 2m v \rightarrow v_f = \frac{v}{2} \)

\(K_i = \frac{1}{2} m v^2 \)
\(K_f = \frac{1}{2} (2m)(\frac{v}{2})^2 = m \left(\frac{v}{2} \right)^2 = \frac{m v^2}{4} = \frac{1}{2} K_i \)

3. A red ball with a velocity of +3.0 m/s collides head-on with a yellow ball of equal mass moving with a velocity of -2.0 m/s. What is the velocity of the yellow ball after the collision?

(A) +3.0 m/s
(B) 0
(C) -2.0 m/s
(D) +2.5 m/s
(E) +5.0 m/s

Elastic Collision: Solve \(m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \)

For \(m_1 = \text{Red}, m_2 = \text{Yellow}, m_1 = m_2 \) Obtain \(v_{2f} = 3 \text{ m/s}, \) \(v_{1f} = -2 \text{ m/s} \)

4. An elastic collision of two objects is characterized by the following

(A) Momentum is conserved
(B) Kinetic Energy is conserved
(C) Both (A) and (B)
(D) Neither (A) nor (B)

5. A 75 Kg swimmer dives horizontally with speed 4 m/sec off an initially stationary 500 Kg raft. What is the speed of the raft immediately after the dive?

(a) 0 m/sec
(b) 0.2 m/sec
(c) 0.5 m/sec
(D) 0.6 m/sec
(e) 4.0 m/sec

\(\Sigma \vec{F}_{ext} = 0 \rightarrow \Delta \vec{p} = 0 \rightarrow \vec{p}_i = \vec{p}_f \), \(p_i = 0 \rightarrow p_f = 0 \)

\(\Sigma \vec{F}_{raft} = 0 \rightarrow v_{raft} = \frac{-75 \times 4}{500} = -0.6 \text{ m/s} \)

\(\text{speed} = 0.6 \text{ m/s} \)
1. If the mass of \(m_1 \) is 1 kg and \(m_2 \) is 3 kg in the figure and \(m_3 \) is 2 kg, what is the x coordinate of the center of mass?

(A) 0.67 (B) 1.17 (C) 1.33 (D) 1.67

\[
X_{CM} = \frac{\sum m_i x_i}{\sum m_i} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}
\]

\[
X_{CM} = \frac{1 \times 0 + 3 \times 1 + 2 \times 2}{1 + 3 + 2} = \frac{7 \text{ kg m}}{6 \text{ kg}} = 1.17 \text{ m}
\]

2. An inelastic collision of two objects is characterized by the following

(A) Momentum is conserved (B) Kinetic Energy is conserved
(C) Both (A) and (B) (D) Neither (A) nor B

3. A firehose directs a steady stream of 15 kg/sec of water with velocity 28 m/sec against a flat plate. What force is required to hold the plate in place?

(A) 110 N (B) 420 N (C) 1100 N (D) 4116 N

\[
\text{In 1 sec, } m = 15 \text{ kg/s} \times 1 \text{ sec} = 15 \text{ kg}
\]

\[
\mathbf{F}_{\text{avg}} \times 1 \text{ sec} = 15 \text{ kg} \times 28 \text{ m/sec} = 420 \text{ N}
\]

4. What is the magnitude of the impulse in the figure

(A) 100 Ns (B) 900 Ns (C) 1000 Ns (D) 1100 Ns

\[
\mathbf{J} = \mathbf{F}_{\text{avg}} \times \Delta t = 100 \text{ N} \times (10 \text{ sec} - 1 \text{ sec})
\]

\[
= 100 \text{ N} \times 9 \text{ sec} = 900 \text{ Ns}
\]

5. A 12000 kg railroad car travelling at 10 m/s strikes and couples with a 6000 kg caboose moving towards it at a speed of 2 m/s. What is the speed of the combination of railroad cars after the collision

(A) 5.2 m/s (B) 6.0 m/s (C) 7.3 m/s (D) 8 m/s

\[
\sum F_x = 0 \quad \Delta \mathbf{p} = \mathbf{0} \rightarrow \mathbf{p}_i = \mathbf{p}_f
\]

\[
\mathbf{p}_i = \mathbf{p}_f = (m_1 + m_2) \mathbf{v}_f
\]

\[
\mathbf{v}_f = \frac{108,000}{18,000} \text{ kg m/s} = 6 \text{ m/s}
\]