Decomposition of a Given Vector

Problem: Given vector \(\bar{v} = (1, -9, 1) \in \mathbb{R}^3 \), write \(\bar{v} \) as \(\bar{w} + \bar{w}_\bot \) where \(\bar{w} \) is in the subspace \((a, b, a - 2b) \) of \(\mathbb{R}^3 \) and \(\bar{w}_\bot \) is perpendicular to the subspace \((a, b, a - 2b) \).

Defining a subspace in this manner is saying that the subspace consists of all vectors in \(\mathbb{R}^3 \) which may be written as \(a(1, 0, 1) + b(0, 1, -2) \) that is, \(\bar{d}_1 = (1, 0, 1) \) and \(\bar{d}_2 = (0, 1, -2) \) are basis vectors for the given subspace. However \(\bar{d}_1 \) and \(\bar{d}_2 \) are neither orthogonal nor unit vectors, since
\[
\bar{d}_1 \cdot \bar{d}_2 = -2 \neq 0
\]
\[
\| \bar{d}_1 \| = \sqrt{1^2 + 1^2} = \sqrt{2} \neq 1
\]
\[
\| \bar{d}_2 \| = \sqrt{1^2 + (-2)^2} = \sqrt{5} \neq 1
\]

Let \(\bar{u}_1 \) and \(\bar{u}_2 \) be orthonormal basis vectors for the same subspace (ie both orthogonal and unit vectors). The first, \(\bar{u}_1 \), may be taken as just \(\bar{d}_1 \) made a unit vector, ie
\[
\bar{u}_1 = \frac{\bar{d}_1}{\| \bar{d}_1 \|} = \frac{(1, 0, 1)}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)
\]
To find the \(\overline{u}_z \), we first find the vector component of \(\overline{d}_z \) in the direction of \(\overline{u}_1 \), i.e.

\[
(\overline{d}_z \cdot \overline{u}_1) \overline{u}_1
= \left[(0, 1, -2) \cdot \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \right] \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)
= -\frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) = (-1, 0, -1)
\]

This is subtracted from \(\overline{d}_z \), i.e.

\[
(0, 1, -2) - (-1, 0, -1) = (1, 1, -1)
\]

and then this is made a unit vector to become \(\overline{u}_2 \), i.e.

\[
\overline{u}_2 = \frac{(1, 1, -1)}{\| (1, 1, -1) \|} = \frac{(1, 1, -1)}{\sqrt{3}}
\]

\[
\overline{u}_2 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)
\]

Clearly \(\overline{u}_1 \) and \(\overline{u}_2 \) are unit vectors, and since \(\overline{u}_1 \cdot \overline{u}_2 = 0 \), they are orthogonal.

Also \(\overline{d}_1 = \sqrt{2} \overline{u}_1 \),

and \(\overline{d}_2 = -\sqrt{2} (\overline{u}_1) + \sqrt{3} (\overline{u}_2) \)

So \(\overline{d}_1 \) with \(\overline{d}_2 \) span the same subspace as do \(\overline{u}_1 \) with \(\overline{u}_2 \), i.e.

\[
\text{Span} \left\{ \overline{d}_1, \overline{d}_2 \right\} = \text{Span} \left\{ \overline{u}_1, \overline{u}_2 \right\}
\]
The desired vector \overline{w}, i.e. the portion of \overline{u} in the given subspace is then:

$$\overline{w} = (\overline{v} \cdot \overline{u}_1) \overline{u}_1 + (\overline{v} \cdot \overline{u}_2) \overline{u}_2$$

$$= (1, -9, 1) \cdot \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$

$$+ (1, -9, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)$$

$$= \frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) + \frac{-9}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)$$

$$= (1, 0, 1) + (-3, -3, 3)$$

$$\overline{w} = (-2, -3, 4)$$

and \overline{w}_\perp is what remains of \overline{u} when \overline{w} is subtracted, i.e.

$$\overline{w}_\perp = \overline{v} - \overline{w} = (1, -9, 1) - (-2, -3, 4)$$

$$\overline{w}_\perp = (3, -6, -3)$$

Let's check our result.

Clearly $\overline{v} = \overline{w} + \overline{w}_\perp$

and \overline{w}_\perp is not in the given subspace since

$$\overline{w}_\perp \cdot \overline{d}_1 = (3, -6, -3) \cdot (1, 0, 1) = 0$$

and $$\overline{w}_\perp \cdot \overline{d}_2 = (3, -6, -3) \cdot (0, 1, -2) = 0$$