Physics 6B

Waves and Sound Examples
Wave Basics – This is a transverse* wave.

The WAVELENGTH (\(\lambda\)) is the distance between successive wave peaks.

The PERIOD (\(T\)) is the time it takes for the wave to move 1 wavelength.

The FREQUENCY (\(f\)) is the reciprocal of the period. \(f = 1/T\) or \(T = 1/f\)

The main formula for all waves relates these quantities to wave speed:

\[
v = \lambda \cdot f = \lambda/T
\]

*Transverse means the wave propagates perpendicular to the displacement of the underlying medium (like waves on water or a string).
Wave Speeds

- Speed depends on mechanical properties of the medium (i.e. density or tension, etc.)

- All waves in the same medium will travel the same speed*.

- When a wave propagates from one medium to another, its speed and wavelength will change, but its frequency will be constant.

For the specific case of a wave on a string, we have a formula for speed:

\[v_{\text{wave}} = \sqrt{\frac{\text{Tension}}{\text{mass/length}}} = \sqrt{\frac{F_T}{\mu}} \]

*We will see one exception to this later, when we deal with light (Ch. 23).
EXAMPLE With what tension must a rope of length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40.0Hz to have wavelength 0.75m?
EXAMPLE With what tension must a rope of length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40.0Hz to have wavelength 0.75m?

\[v = \sqrt{\frac{F_{\text{tension}}}{\mu}}, \mu = \frac{\text{mass}}{\text{length}} = \frac{0.12\text{kg}}{2.5\text{m}} = 0.048\text{kg/m} \]
EXAMPLE With what tension must a rope of length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40.0Hz to have wavelength 0.75m?

\[v = \sqrt{\frac{F_{\text{tension}}}{\mu}}, \mu = \frac{\text{mass}}{\text{length}} = \frac{0.12 \text{kg}}{2.5 \text{m}} = 0.048 \text{kg/m} \]

To use this we need to find the wave speed. Luckily we have a formula for that: \(v = f \cdot \lambda \)
EXAMPLE With what tension must a rope of length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40.0Hz to have wavelength 0.75m?

\[
v = \sqrt{\frac{F_{\text{tension}}}{\mu}, \mu = \frac{\text{mass}}{\text{length}} = \frac{0.12\text{kg}}{2.5\text{m}} = 0.048\text{kg/m}}
\]

To use this we need to find the wave speed. Luckily we have a formula for that: \(v = f \cdot \lambda \)

\[
v = (40\text{Hz})(0.75\text{m}) = 30 \frac{\text{m}}{\text{s}}
\]
EXAMPLE With what tension must a rope of length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40.0Hz to have wavelength 0.75m?

\[
v = \sqrt{\frac{F_{\text{tension}}}{\mu}} \quad \mu = \frac{\text{mass}}{\text{length}} = \frac{0.12\text{kg}}{2.5\text{m}} = 0.048\text{kg/m}
\]

To use this we need to find the wave speed. Luckily we have a formula for that: \(v = f \cdot \lambda \)

\[
v = (40\text{Hz})(0.75\text{m}) = 30\frac{\text{m}}{\text{s}}
\]

Now plug into the previous equation:

\[
30\frac{\text{m}}{\text{s}} = \sqrt{\frac{F_{\text{tension}}}{0.048\text{kg/m}}} \Rightarrow F_{\text{tension}} = 43.2\text{N}
\]
Wave Interference

Constructive Interference:
Waves add - larger amplitude.
These waves are “In Phase”

Destructive Interference:
Waves cancel - smaller amplitude.
These waves are “Out of Phase”
They are out of sync by \(\frac{1}{2} \lambda \)

Interference in action

http://www.kettering.edu/physics/drussell/Demos/superposition/superposition.html

Prepared by Vince Zaccone
For Campus Learning Assistance Services at UCSB
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by ½ wavelength (or 3/2, 5/2 etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by ½ wavelength (or 3/2, 5/2 etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.

It helps to notice that, at the beginning, the listener is exactly in the middle, so \(r_1 = r_2 = D/2 \).
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

![Diagram showing two loudspeakers and an observer at the center of the gym. The total distance is D, with distances r1 = D/2 + x and r2 = D/2 - x labeled.]

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by ½ wavelength (or 3/2, 5/2 etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.

It helps to notice that, at the beginning, the listener is exactly in the middle, so r1 = r2 = D/2. Now when she moves over a distance x, that distance is added to r1 and subtracted from r2.
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by \(\frac{1}{2} \) wavelength (or \(\frac{3}{2}, \frac{5}{2} \) etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.

It helps to notice that, at the beginning, the listener is exactly in the middle, so \(r_1 = r_2 = D/2 \).

Now when she moves over a distance \(x \), that distance is added to \(r_1 \) and subtracted from \(r_2 \).

For destructive interference we need the difference in path lengths to be a half wavelength.

\[
 r_1 - r_2 = \frac{1}{2} \lambda
\]
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by ½ wavelength (or 3/2, 5/2 etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.

It helps to notice that, at the beginning, the listener is exactly in the middle, so \(r_1 = r_2 = D/2 \).

Now when she moves over a distance \(x \), that distance is added to \(r_1 \) and subtracted from \(r_2 \).

For destructive interference we need the difference in path lengths to be a half wavelength.

\[
 r_1 - r_2 = \frac{1}{2} \lambda \Rightarrow (\frac{D}{2} + x) - (\frac{D}{2} - x) = \frac{1}{2} \lambda \Rightarrow 2x = \frac{1}{2} \lambda \Rightarrow x = \frac{1}{4} \lambda
\]

She needs to move over a quarter-wavelength
EXAMPLE – Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 256-Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. How far toward either speaker must the observer walk to first experience destructive interference?

To solve this type of problem we need to compare the distances traveled by each sound wave. If the distances differ by $\frac{1}{2}$ wavelength (or $\frac{3}{2}$, $\frac{5}{2}$ etc.) we get destructive interference.

Label the diagram accordingly, then write down an expression for the path-length difference.

It helps to notice that, at the beginning, the listener is exactly in the middle, so $r_1 = r_2 = \frac{D}{2}$.

Now when she moves over a distance x, that distance is added to r_1 and subtracted from r_2.

For destructive interference we need the difference in path lengths to be a half wavelength.

$$r_1 - r_2 = \frac{1}{2} \lambda \Rightarrow (\frac{D}{2} + x) - (\frac{D}{2} - x) = \frac{1}{2} \lambda \Rightarrow 2x = \frac{1}{2} \lambda \Rightarrow x = \frac{1}{4} \lambda$$

She needs to move over a quarter-wavelength

To get the wavelength, use the main formula for waves: $v = \lambda f$ with $v_{\text{sound}} = 343$ m/s.

$$\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{256 \text{ Hz}} = 1.34 \text{ m}$$

$x = \frac{1}{4} \lambda = 0.34 \text{ m}$
Standing Waves

When waves are traveling back and forth along the string, they interfere to form standing waves. These are the only waveforms that will “fit” on the string. Notice that this pattern gives us our formulas.

(a) $n = 1$

$$\frac{A}{2} = L$$

Fundamental frequency, f_1

(b) $n = 2$

$$2\frac{A}{2} = L$$

Second harmonic, f_2

First overtone

(c) $n = 3$

$$3\frac{A}{2} = L$$

Third harmonic, f_3

Second overtone

(d) $n = 4$

$$4\frac{A}{2} = L$$

Fourth harmonic, f_4

Third overtone
Standing Waves

• Basic formulas for waves on a string:

\[\lambda_n = \frac{2L}{n} \]

\[f_n = n \frac{v}{2L} = n \cdot f_1 \]
Standing Waves

• Basic formulas for waves on a string:
\[\lambda_n = \frac{2L}{n} \]
\[f_n = n \frac{v}{2L} = n \cdot f_1 \]

• For waves in a pipe:
 • Both ends open – same as the string
 • One end closed – modified formulas
\[\lambda_n = \frac{4L}{n} ; n = 1, 3, 5, 7, \ldots \]
\[f_n = n \frac{v}{4L} ; n = 1, 3, 5, 7, \ldots \]
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.
a) What is the speed of propagation of transverse waves in the wire?
b) Compute the tension in the wire.
c) What is the frequency and wavelength of the 4th harmonic?
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.

a) What is the speed of propagation of transverse waves in the wire?
b) Compute the tension in the wire.
c) What is the frequency and wavelength of the 4th harmonic?

Since the string is in its fundamental mode (1st harmonic) we have a formula for frequency:

\[f_1 = 1 \cdot \frac{v}{2L} \]
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.

a) What is the speed of propagation of transverse waves in the wire?

b) Compute the tension in the wire.

c) What is the frequency and wavelength of the 4th harmonic?

Since the string is in its fundamental mode (1st harmonic) we have a formula for frequency:

\[f_1 = \frac{1}{2L} \cdot \nu \]

Solve this for \(\nu \):

\[\nu = (60\text{Hz})(2 \cdot 80\text{cm}) = 9600 \frac{\text{cm}}{s} = 96 \frac{\text{m}}{s} \]

(a) \(n = 1 \)
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.

a) What is the speed of propagation of transverse waves in the wire?
b) Compute the tension in the wire.
c) What is the frequency and wavelength of the 4th harmonic?

Since the string is in its fundamental mode (1st harmonic) we have a formula for frequency:

\[f_1 = \frac{1}{2L} \cdot \frac{v}{\mu} \]

Solve this for v:

\[v = (60\text{Hz})(2 \cdot 80\text{cm}) = 9600\frac{\text{cm}}{s} = 96\frac{\text{m}}{s} \]

Now we can use our formula for wave speed to find the tension:

\[v = \sqrt{\frac{F_{\text{tension}}}{\mu}}; \mu = \frac{\text{mass}}{\text{length}} = \frac{0.04\text{kg}}{0.8\text{m}} = 0.05\frac{\text{kg}}{\text{m}} \]
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.

a) What is the speed of propagation of transverse waves in the wire?
b) Compute the tension in the wire.
c) What is the frequency and wavelength of the 4th harmonic?

Since the string is in its fundamental mode (1st harmonic) we have a formula for frequency:

\[f_1 = \frac{v}{2L} \]

Solve this for \(v \):

\[v = \left(60 \text{Hz}\right)(2 \cdot 80 \text{cm}) = 9600 \text{ cm/s} = 96 \text{ m/s} \]

Now we can use our formula for wave speed to find the tension:

\[v = \sqrt{\frac{F_{\text{tension}}}{\mu}}; \mu = \frac{\text{mass}}{\text{length}} = \frac{0.04 \text{ kg}}{0.8 \text{ m}} = 0.05 \text{ kg/m} \]

\[96 \text{ m/s} = \sqrt{\frac{F_{\text{tension}}}{0.05 \text{ kg/m}}} \Rightarrow F_{\text{tension}} = 461 \text{ N} \]
EXAMPLE A wire with mass 40g is stretched so that its ends are tied down at points 80cm apart. The wire vibrates in its fundamental mode with frequency 60Hz.

a) What is the speed of propagation of transverse waves in the wire?
b) Compute the tension in the wire.
c) What is the frequency and wavelength of the 4th harmonic?

Since the string is in its fundamental mode (1st harmonic) we have a formula for frequency:

\[f_1 = \frac{1 \cdot v}{2L} \]

Solve this for \(v \):

\[v = \frac{(60\text{Hz})(2 \cdot 80\text{cm})}{9600\text{cm}} = 96 \frac{\text{m}}{\text{s}} \]

Now we can use our formula for wave speed to find the tension:

\[v = \sqrt{\frac{F_{\text{tension}}}{\mu}}; \mu = \frac{\text{mass}}{\text{length}} = \frac{0.04\text{kg}}{0.8\text{m}} = 0.05 \frac{\text{kg}}{\text{m}} \]

\[96 \frac{\text{m}}{\text{s}} = \sqrt{\frac{F_{\text{tension}}}{0.05 \frac{\text{kg}}{\text{m}}}} \Rightarrow F_{\text{tension}} = 461\text{N} \]

To get the 4th harmonic frequency, just multiply the 1st harmonic by 4

To get the 4th harmonic wavelength, just divide the 1st harmonic by 4

\[f_4 = 4 \cdot 60\text{Hz} = 240\text{Hz} \]

\[\lambda_4 = \frac{2(80\text{cm})}{4} = 40\text{cm} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{FT}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F_T}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F_T}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]

Rearranging this equation:

\[L_B = \frac{v_B}{v_A} \cdot L_A \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F}{\mu}} \] Speed of wave on string

\[f_1 = \frac{v}{2L} \] Fundamental frequency

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]

Rearranging this equation:

\[L_B = \frac{v_B}{v_A} \cdot L_A \]

Now we can use the formula for wave speed:

\[\frac{v_B}{v_A} = \frac{\sqrt{\frac{F}{\mu}}}{\sqrt{\frac{F}{\mu}}} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F_T}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]

Rearranging this equation:

\[L_B = \frac{v_B}{v_A} \cdot L_A \]

Now we can use the formula for wave speed:

\[\frac{v_B}{v_A} = \sqrt{\frac{F_T}{\mu_B}} = \sqrt{\frac{\mu_A}{\mu_B}} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F_T}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]

Rearranging this equation:

\[L_B = \frac{v_B}{v_A} \cdot L_A \]

Now we can use the formula for wave speed:

\[\frac{v_B}{v_A} = \sqrt{\frac{\mu_B}{\mu_A}} = \frac{\mu_A}{\mu_B} = \sqrt{2} \]
Example: Suppose we have 2 strings. String B has twice the mass density of string A (B is thicker and heavier). If both wires have the same tension applied to them, how can we adjust their lengths so that their fundamental frequencies are equal?

The relevant formulas are:

\[v = \sqrt{\frac{F_T}{\mu}} \quad \text{Speed of wave on string} \]

\[f_1 = \frac{v}{2L} \quad \text{Fundamental frequency} \]

We need the fundamental frequencies to be equal:

\[\frac{v_A}{2L_A} = \frac{v_B}{2L_B} \]

Rearranging this equation:

\[L_B = \frac{v_B}{v_A} \cdot L_A \]

Now we can use the formula for wave speed:

\[\frac{v_B}{v_A} = \sqrt{\frac{\mu_B}{\mu_A}} = \sqrt{\frac{1}{2}} \]

Finally we can plug this into our previous equation:

\[L_B = \sqrt{\frac{1}{2}} \cdot L_A \]
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A_4 note (440 Hz) when played.

● Where must the player put a finger (at what distance x from the bridge) to play a D_5 note (587 Hz)? For both notes, the string vibrates in its fundamental mode.
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A_4 note (440 Hz) when played. Where must the player put a finger (at what distance x from the bridge) to play a D_5 note (587 Hz)? For both notes, the string vibrates in its fundamental mode. When a string is vibrating in its fundamental mode (i.e. 1$^{\text{st}}$ harmonic), its wavelength is given by $\lambda=2L$. In this case $\lambda=1.20\text{m}$.

![Diagram of a string instrument with a fingerboard and bridge.]
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A₄ note (440 Hz) when played.

- Where must the player put a finger (at what distance x from the bridge) to play a D₅ note (587 Hz)? For both notes, the string vibrates in its fundamental mode.

When a string is vibrating in its fundamental mode (i.e. 1ˢᵗ harmonic), its wavelength is given by $\lambda = 2L$. In this case $\lambda = 1.20$m.

Now we can use our basic relationship for waves: $v = f \lambda$

This gives the speed of the waves on this string: $v = 528$ m/s
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A\textsubscript{4} note (440 Hz) when played.

- Where must the player put a finger (at what distance \(x\) from the bridge) to play a D\textsubscript{5} note (587 Hz)? For both notes, the string vibrates in its fundamental mode.

When a string is vibrating in its fundamental mode (i.e. 1st harmonic), its wavelength is given by \(\lambda=2L\). In this case \(\lambda=1.20\text{m}\).

Now we can use our basic relationship for waves: \(v=f\lambda\)

This gives the speed of the waves on this string: \(v=528\text{ m/s}\)

Now we work with the second case, where the finger is placed at a distance \(x\) away from the bridge. The wavelength in this case will be \(\lambda=2x\).
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A_4 note (440 Hz) when played.

Where must the player put a finger (at what distance x from the bridge) to play a D_5 note (587 Hz)? For both notes, the string vibrates in its fundamental mode.

When a string is vibrating in its fundamental mode (i.e. 1st harmonic), its wavelength is given by $\lambda=2L$. In this case $\lambda=1.20 \text{ m}$.

Now we can use our basic relationship for waves: $v=\lambda f$

This gives the speed of the waves on this string: $v=528 \text{ m/s}$

Now we work with the second case, where the finger is placed at a distance x away from the bridge. The wavelength in this case will be $\lambda=2x$.

Same string – same speed. Substitute into our basic formula to get:

$$528 \text{ m/s} = (587 \text{ Hz}) \cdot (2x)$$
EXAMPLE The portion of string between the bridge and upper end of the fingerboard (the part of the string that is free to vibrate) of a certain musical instrument is 60.0 cm long and has a mass of 2.81g. The string sounds an A₄ note (440 Hz) when played.

Where must the player put a finger (at what distance x from the bridge) to play a D₅ note (587 Hz)? For both notes, the string vibrates in its fundamental mode.

When a string is vibrating in its fundamental mode (i.e. 1ˢᵗ harmonic), its wavelength is given by \(\lambda = 2L \). In this case \(\lambda = 1.20 \text{m} \).

Now we can use our basic relationship for waves: \(v = f \lambda \)

This gives the speed of the waves on this string: \(v = 528 \text{ m/s} \)

Now we work with the second case, where the finger is placed at a distance x away from the bridge. The wavelength in this case will be \(\lambda = 2x \).

Same string – same speed. Substitute into our basic formula to get:

\[
528 \frac{\text{m}}{\text{s}} = (587\text{hz}) \cdot (2x)
\]

\[
x = 45\text{cm}
\]
Beat Frequency

Two sounds with frequencies that are similar will produce “beats”.

This is heard as a rising and falling amplitude wave with a frequency equal to the difference between the original two waves.

\[f_{\text{beats}} = |f_2 - f_1| \]

Here is an example:

The two tones are 440Hz and 442Hz, so the beat frequency is 2Hz.

We get the same beat frequency if the tones are 438Hz and 440Hz.

Beats and more explained